- Lietuvių
Aus Wikibooks
- ↳ Projekt „Mathe für Nicht-Freaks“
- ↳ Grundlagen der Mathematik
Inhalte „Grundlagen der Mathematik“
- Was ist Mathematik?
- Einführung in die Logik
- Beweise und Beweismethoden
- Vollständige Induktion
- Mengenlehre
- Relationen
- Abbildungen
- Mächtigkeit von Mengen
- Gleichungsumformungen
- Summe, Produkt und Fakultät
- Binomialkoeffizient
- Binomialkoeffizient
- Der binomische Lehrsatz
- Rechenregeln
- Anhang
Deine Meinung zählt – Gestalte unsere Lerninhalte mit!
Wir entwickeln neue, interaktive Formate für die Hochschulmathematik. Nimm dir maximal 15 Minuten Zeit, um an unserer Umfrage teilzunehmen.
Mit deinem Feedback machen wir die Mathematik für dich und andere Studierende leichter zugänglich!
Der binomische Lehrsatz
[Bearbeiten]
Sicherlich sind dir die binomischen Formeln noch aus der Schule bekannt. Ich kann mir gut vorstellen, dass dein Mathe-Lehrer sie in seinen Unterrichtsstunden hoch und runter gebetet hat. Nicht ohne Grund! Denn immer wieder helfen sie dir die binomischen Formeln geschickt umzuformen und Beweise einfach zu führen. Hier zur Wiederholung die drei binomischen Formeln, welche für alle gelten:
Denk immer an diese Formeln. Wenn du zum Beispiel auf Terme wie triffst, kannst du sie auch als schreiben. Manchmal kannst du so schwierige Terme vereinfachen oder zusammenfassen. Doch nun zum Thema dieses Kapitels: Wie lauten die binomischen Formeln für größere Potenzen als der 2?. Wir wollen also eine allgemeine Lösungsformel für den Term für finden.
Hinweis
Denk daran, wenn wir wissen, was ist, wissen wir auch, was ist. Denn wir können als schreiben und für können wir die gefundene Formel anwenden. Dies gilt insbesondere auch für die obigen binomischen Formeln. So folgt wegen die zweite binomische Formel direkt aus der ersten.
Schauen wir uns ein Beispiel an: Wir wollen wissen, was ist. Hierzu müssen wir den Term ausmultiplizieren, wie es in der folgenden Animation gezeigt wird:
Wir erhalten so den Term . Es fällt auf, dass für jeden Summanden der Gesamtsumme die Summe der Exponenten von und gleich 3 ist. Dies leuchtet ein. Wir nehmen nämlich, wenn wir das Produkt ausmultiplizieren, aus jedem der Terme entweder ein oder ein (in jeden Summanden kommen insgesamt 3 Faktoren oder vor). Die Summe der Exponenten beider Variablen muss also gleich 3 sein. Es müssen so nur noch die Koeffizienten der einzelnen Summanden bestimmt werden.
Wir sind nun bereit für den allgemeinen Fall. Wir wollen wissen:
Wir wissen, dass das Ergebnis eine Summe von Potenzen in und ist. Die Summe der Exponenten in jedem Summanden ist gleich . Alle Potenzen besitzen also die Form , wobei eine natürliche Zahl ist (die 0 ist mit eingeschlossen). Wir müssen noch die Koeffizienten dieser Potenzen bestimmen. Betrachten wir einige Beispiele. Der Koeffizient von muss 1 sein. Denn wenn wir diese Potenz erhalten wollen, müssen wir aus allen Termen die Variable wählen:
Analog ist auch der Koeffizient für 1. Doch wie lautet allgemein der Koeffizient für den Term ? Dazu müssen wir aus den Termen -mal die Variable und -mal die Variable wählen. Doch wie viele Möglichkeiten gibt es aus Termen -mal eine Variable auszuwählen? Fällt dir etwas auf? Genau, dies ist der im vorherigen Abschnitt diskutierte Binomialkoeffizient ! Dementsprechend ist der Koeffizient von gleich (Deshalb auch der Name: Binomialkoeffizient!). Wir erhalten:
Satz(Der binomische Lehrsatz)
Für alle reellen Zahlen und und für alle natürlichen Zahlen gilt:
Folgerungen aus dem binomischen Lehrsatz
[Bearbeiten]
Mit Hilfe des binomischen Lehrsatzes kannst du nun weitere Antworten auf Fragen der Kombinatorik finden. Stell dir vor, du hast eine beliebige, endliche Menge gegeben. Wie viele Teilmengen kannst du aus dieser Menge bilden? Wir wissen bereits, dass die Anzahl der -elementigen Teilmengen von dem Binomialkoeffizienten entspricht ( ist die Anzahl der Elemente der Menge ). Um die Gesamtzahl aller Teilmengen der Menge zu finden, müssen wir die Summe über die Anzahl aller -elementigen Teilmengen von mit bilden. Wir erhalten (Anmerkung: ist Potenzmenge von , also die Menge aller Teilmengen von . Dementsprechend ist die Anzahl aller Teilmengen von .):
Frage: Was ist das Ergebnis der obigen Summe? Vergleiche dazu die obige Summe mit dem binomischen Lehrsatz!
Die obige Summe entsteht aus dem binomischen Lehrsatz für und . Dementsprechend ist .
Satz(Größe der Potenzmenge einer endlichen Menge)
Sei eine beliebige endliche Menge. Dann ist .
Und wie sieht es mit der folgenden Summe aus?
Frage: Wie lautet das Ergebnis der obigen Summe?
Die obige Summe entsteht aus dem binomischen Lehrsatz für und . Das Ergebnis der Summe lautet dementsprechend:
Rechenregeln →
Fragen? Feedback? Interesse an der Mitarbeit?
Wenn du Fragen zum Inhalt hast oder etwas nicht verstanden hast, kontaktiere uns. Wir werden dir deine Fragen gerne beantworten! Auch für Kritik und Anmerkungen sind wir sehr dankbar! Unsere Artikel sind gewissenhaft recherchiert, aber vereinzelte Fehler können nicht ausgeschlossen werden und wir sind sehr dankbar für alle Hinweise. Melde dich auch bei uns, wenn du unsere Vision, Hochschulmathematik verständlich zu erklären, unterstützen möchtest! Unsere Kontaktmöglichkeiten:
E-Mail: hochschulmathematik@serlo.org
Hinweis: Telegram ist ein externer Chatdienst, der nicht von Serlo oder der Wikimedia betrieben wird. Bitte informiere dich selbstständig, ob du mit ihren Datenschutzbestimmungen einverstanden bist.
Dieser Artikel steht unter einer freien CC-BY-SA 3.0 Lizenz. Damit kannst du ihn frei verwenden, bearbeiten und weiterverbreiten, solange du „Mathe für Nicht-Freaks“ als Quelle nennst und deine Änderungen am Text unter derselben CC-BY-SA 3.0 oder einer dazu kompatiblen Lizenz stellst. Auf der Seite „Kopier uns!“ erklären wir dir detailliert, was du bei der Benutzung unsere Texte, Bilder und Videos beachten musst.
Abgerufen von „“